التخطي إلى المحتوى الرئيسي

Primary production

 

primary production,net primary production,primary production meaning,gross primary productivity,primary production definition,primary production pronunciation,net primary productivity,primary production ecology,ecosystem primary production,primary and secondary production,primary production and energy flow,primary,primary sector,production,oil production,ecology production,what is primary productivity,ecology primary productivity,wind energy production


Petroleum occurs in the microscopic pores of sedimentary rocks

 that form a reservoir typically,

reservoir rock consists of sand, sandstone, limestone, or dolomite.

 However, not all of the pores in a rock will contain petroleum

 some will be filled with water or brine that is saturated with minerals.

 Both oil and gas have a low specific gravity relative to water

 and will thus float through the more porous sections of reservoir rock from their source area to the surface unless restrained by a trap.

 A trap is a reservoir that is overlain and underlain by dense impermeable cap rock

or a zone of very low or no porosity that restrains migrating hydrocarbon.

 Reservoirs vary from being quite small to covering several thousands of acres,

and range in thickness from a few inches to hundreds of feet or more.

In general, petroleum is extracted by drilling wells from an appropriate surface

 configuration into the hydrocarbon-bearing reservoir.

 Wells are designed to contain and control all fluid flow at all times throughout drilling and producing operations.

The number of wells required is dependent on a combination of technical and economic factors

 used to determine the most likely range of recoverable reserves relative to a range of potential investment alternatives.

There are three phases for recovering oil from reservoirs:

1. Primary recovery occurs as wells produce because of natural energy from expansion of gas and water within the producing formation,

 pushing fluids into the well bore and lifting the fluids to the surface.

2. Secondary recovery requires energy to be applied to lift fluids to surface

 this may be accomplished by injecting gas down a hole to lift fluids to the surface,

installation of a subsurface pump, or injecting gas or water into the formation itself.

3. Tertiary recovery occurs when a means is required to increase fluid mobility within the reservoir

 this may be accomplished by introducing additional heat into the formation to lower the viscosity and improve its ability to flow to the well bore.

Production rates from reservoirs depend on a number of factors,

 such as reservoir geometry, reservoir pressure, reservoir depth, rock type and permeability, fluid saturations and properties, extent of fracturing,

number of wells and their locations, and the ratio of the permeability of the formation to the viscosity of the oil.

The geological variability of reservoirs means that production profiles differ from field to field.

Heavy oil reservoirs can be developed to significant levels of production and maintained for a period of time by supplementing natural drive force,

while gas reservoirs normally decline more rapidly.

The primary production from a reservoir when the driving force is the expansion of oil plus the solution gas,

will depend on the pressure being above or below the bubble point.

As long as the reservoir pressure is above the bubble point,

 only oil is produced and the solution factor of gas in the produced oil remains constant.

 When the pressure falls below the bubble point,

the liberated gas may be produced into the wells together with the oil, and the produced gas to oil ratio starts to increase.

After some time, the driving force is exhausted and the production curve starts to fall.

 At the same time, water production may start, which is unfavorable.

The total recovery for such reservoirs is small (5–25 %).

Preferentially, the gas should have remained in the reservoir to maintain the driving force.

 This can to some extent be achieved by a well strategy which allows the liberated gas to migrate away from the production wells to the top of the reservoir.

In mediaeval days, oil was collected from seepages and even hand-dug wells,

but before the nineteenth century had closed, drilling technology, which had already been developed for salt extraction,

 was adapted to the oil industry.

 The cable-tool, consisting of no more than a bullet-shaped weight on the end of a rope which thumped its way into the earth,

 was followed by the more efficient rotary rig, comprising a bit on the end of a rotating shaft, allowing the search to go deeper.

 Great technological progress was made in all aspects of the operation.

While much early exploration was undertaken by the so-called wildcatters,

it did not take long to discover the essential geological controls of source, reservoir, trap and seal.

 At first, petroleum geologists relied on surface observations to identify promising prospects,

 endowed with the rare, right combination of circumstances,

but before long they developed geophysical techniques to scan the depths.

Both the technology and the interpretation became ever more sophisticated,

assisted in more recent years by massive computing power.

 Perhaps the most important development of all

was a geochemical breakthrough in the 1980s

which elucidated the conditions for oil generation itself,

 making it possible to map accurately where oil was formed and where it was not.

In technological terms, a major development was the semi-submersible rig,

mounted on relatively stable pontoons beneath the wave-base,

which opened up the continental shelves of the world to exploration,

 bringing in new production to replace the traditional onshore fields that were depleting.

 Even more elaborate floating production facilities later tapped the few Deepwater areas having the necessary geological conditions to yield oil.

The technical achievements of installing wellheads on the seabed and developing floating production facilities have been truly impressive.

 The operations are constrained by the limit of the floating facilities, giving a plateau rather than a peak of production.

Only large fields are commercially viable, given the high operating costs.

Secondary recovery techniques, such as water-injection, are also constrained in the circumstances.

 It is even more difficult and expensive to produce deep water gas.

Deepwater operations test technology to the limit and there have been occasional accidents,

 including the serious Macondo accident in the Gulf of Mexico in 2010,

 when 11 men lost their lives and widespread pollution had a serious economic and environmental impact on the US coastline.

The move to the deep water heralded another wave of optimism,

as economists, looking at their office atlas, concluded that there were vast oceans about to deliver a limitless new supply of oil,

but again, the geological constraints began to manifest themselves,

 as it became evident that very special combination of geological circumstances had to be met.

The deep water finds off South America, Africa and in the Gulf of Mexico rely on oil generated in the rifts

 that opened as the continents began to move apart, 150 million years ago.

At first, the rifts were filled with fresh water to become lakes, resembling those of East Africa today, but then the sea broke in.

 It was subject to a high level of evaporation under the warm climate of the time,

which led to the deposition of a thick layer of salt, which sealed the underlying oil.

 Later, about 60 million years ago, sands and clays, which had been deposited at the mouths of rivers on the adjoining continents,

 slumped down the continental slope.

 In some areas they were then taken back into suspension by ocean currents

 which winnowed out the fine-grained material depositing pods of porous sand on the ocean floor.

 Still later, structural movements locally ruptured the salt seal to allow the oil to migrate upwards and collect the pods of sandstone,

which formed excellent reservoirs for oil.

 The remarkable combination of circumstances is obvious.

 Successful attempts are now being made to penetrate the salt seal itself

 and find what is left beneath it, with some promising results in Brazil, albeit at a depth of about 5,000 m.

If you want to learn more about the Primary production you could do so in my book,

economic study of oil and gas well drilling.

which is published on amazon, check it out

https://www.amazon.com/dp/B07BST8YCC


تعليقات

المشاركات الشائعة من هذه المدونة

الفكر الاقتصادي في العصور الوسطى الأوروبية

العصور الوسطى الأوروبية: في القرون من التاسع حتى الخامس عشر الميلادية ساد في أوربا التكوين الاجتماعي الاقطاعي، وتتميز طريقة انتاجه التي بدأت في فرنسا ثم انتشرت في انجلترا وباقي مجتمعات أوروبا: ــ بأن العلاقات الاجتماعية للانتاج تدور أساسا حول الأرض التي تصبح البلورة المادية للملكية العقارية، اذ هي ترتكز على اقتصاد يغلب عليه الطابع الزراعي. ــ لمن يقومون بالعمل في الانمتاج الزراعي حق استعمال الأرض وشغلها. أما حق ملكيته فهو على درجات لهرم من السادة تحدده التقاليد والعادات. ــ هذا الأساس الاقتصادي يقابله شبكة من الروابط الشخصية، جزء من العاملين لا يتمتع بكامل حريته الشخصية حيث أنهم أقنان، أما السادة فيرتبط نظام ملكيتهم بنظام من الواجبات يتحمل بها كل منهم في مواجهة من هو أعلى منه. وتجد طريقة الانتاج هذه جذورها في المجتمع القديم حين بدأ كبار ملاك الأراضي يقاومون سلطة روما عن طريق الاقامة في ملكياتهم العقارية وتوسيع هذه الملكيات بالسيطرة على الملكيات الأصغر والمزارع المهجورة. في هذا النظام توجد جذور نظام الأقنان، غير أن هذا لا يعني أن القن وجد كنتيجة للتحرر الجزئي للعبد وانما ي...

نظرية الانتاج

نظرية الانتاج ـ الانتاج يتمثل في الجهد الانساني الذي يبذل لجعل الموارد الاقتصادية صالحة لاشباع الحاجات الانسانية، وهو جهد يتضمن علاقة مزدوجة. علاقة بين الانسان والطبيعة، وعلاقة بين الانسان والانسان. ـ تتطلب عملية الانتاج توافر العناصر الآتية: القوة العاملة وأدوات العمل وموضوع العمل. ـ تضم نظرية الانتاج موضوعات عديدة أهمها: عناصر الانتاج وكيفية التأليف بين هذه العناصر وأشكال المشروعات القائمة الانتاج، واتجاهات هذه المشروعات. ـ عناصر الانتاج وتسمى أيضا عناصر المشروع هي الموارد التي يستخدمها المجتمع في انتاج ما يحتاجه من سلع وخدمات، عناصر الانتاج أربعة: الطبيعة والعمل ورأس المال والتنظيم. ـ الموارد الطبيعية كعنصر من عناصر الانتاج هي كافة هبات الطبيعة التي لم يوجدها عمل انساني سابق ولا حاضر والتي تمكن الانسان من انتاج السلع والخدمات التي يحتاجها لاشباع حاجاته. ـ الطبيعة عنصر سلبي في الانتاج. ـ هناك عدة عوامل اساسية تحكم مدى كفاية الموارد الطبيعية لحاجة الانسان اليها للقيام بنشاطه الانتاجي وهي على سبيل الحصر: 1-          ...

خصائص التخلف

خصائص التخلف تنقسم خصائص التخلف الى خصائص مادية أو اقتصادية وخصائص غير مادية أو تخلف البنيان الاجتماعي وسيتم تناولهم وفقا لما يلي:- أولا: الخصائص المادية للتخلف:- تتمثل الخصائص المادية للتخلف في اختلال العلاقة بين الموارد البشرية والمادية واختلال الهيكل الانتاجي والبطالة المقنعة واختلال هيكل الصادرات. 1- اختلال العلاقة بين الموارد البشرية والمادية:- هذه الخاصية ترجع الى عاملين أساسيين هما الانفجار السكاني وانخفاض مستوى التراكم الرأسمالي. ·         الانفجار السكاني:- تواجه الدول المتخلفة بلا استثاء انفجارا سكانيا وان اختلفت درجته وحدته , ويرجع ذلك الى العديد من العوامل منها تحسن وسائل وأساليب الصحة العامة مما يترتب عليه انخفاض شديد في الوفيات مع بقاء معدل المواليد عند مستوى مرتفع. تتميز الدول النامية بتركيب سكاني معين يمثل فيه صغار السن أهمية نسبية كبيرة حيث تزيد نسبة صغار السن في الدول النامية عن 40% بينما هي في الدول الأوروبية تتراوح بين 20-25% فقط وينتج عن ذلك انخفاض حجم القوة العاملة بالمقارنة بالبلدان المتقدمة. يؤدي الانفجار...