التخطي إلى المحتوى الرئيسي

Deepwater Oil and Gas

deepwater horizon,oil and gas,deepwater,deepwater horizon trailer,deepwater horizon documentary,deepwater drilling,deepwater horizon oil spill,deepwater horizon explained,deepwater horizon explosion,deepwater horizon mayday call,deepwater installations,amerra oil and gas animation,offshore deepwater drilling,deepwater horizon documentary national geographic,deepwater petroleum industry,deepwater horizon movie,deepwater pipeline jumper

                                           Deepwater Oil and Gas

 Production in the early days of the oil industry was exclusively onshore, but in due course eyes turned seaward to tap the extensions of fields lying on the coast.

At first, that was achieved by deviating wells from the shore, and later, by drilling from steel platforms in shallow waters, as for example in Trinidad, Peru and Lake Maracaibo.

 Later, a rig was mounted on a barge that could be moved from location to location, which was pioneered in 1949 in the shallow waters of the Gulf of Mexico, off Louisiana.

The breakthrough then came with the idea of building the rig on two submerged pontoons that could rest in relatively tranquil water beneath the wave-base.

 The first such rig, Blue Water No.1, came into operation in 1962, and began to extend the range of drilling to as much as 200 m of water.

 The design was subject to continual improvement such that it soon became possible to drill routine wells in the stormy waters of the North Sea.

 There are two other types of offshore rig worth mentioning: the jack-up which sits on long retractable legs resting on the seabed; and the drillship, having a rig mounted mid-ships on an ordinary vessel, held in place by anchors or thrusters.

Gradually, the continental shelves of the world were explored, and delivered some substantial finds both from the extensions of existing onshore basins and from entirely new provinces.

 Offshore seismic technology also saw great advances from the early days when a seismic boat let off explosive changes, the echoes of which bounced off formations far below the seabed to be recorded on receptors towed behind the vessel.

New sources of energy were developed and computing power brought great sophistication, such that offshore surveys are now cheaper and give better results than onshore ones.

 Despite these advances, great challenges remain in installing the production facilities, such as the massive steel and concrete platforms of the North Sea.

As the opportunities of the continental shelves were gradually exhausted, attention began to turn to the Deepwater domain.

 The Brazilian State Company, Petrobras, pioneered this development, as the country was facing the high cost of imports during the early 1980s.

 To its enormous credit, it successfully began to find and develop fields in exceptionally deep water.

 Parallel developments came in the Gulf of Mexico, and later off Angola, Nigeria and other countries on the other side of the South Atlantic.

Offshore oil resource is playing an increasingly significant role in satisfying our fossil fuel needs.

 According to the U.S. Geological Survey, in 2014, about 47% of the total untapped oil resource comes from the sea.

 For the offshore oil industry, it is becoming an important issue to reliably supply electrical power to the offshore oil platforms.

At present, most of the oil platforms far from the land are powered by the independent power stations built on them.

 This power supply mode, however, would lead to blackout of the platform once the power station thereon shuts down.

Therefore, it becomes a trend to construct offshore oilfield power systems that can interconnect every platform to improve the reliability of power supply.

Since 2010, offshore platforms have been connected electrically along the coast of China. Many larger-scale offshore power systems are emerging.

 Therefore, how to plan a highly reliable power system suitable for the offshore oilfield is critical for the construction as well as the effective and safe operation of the offshore oil industry.

The technology of planning has been widely studied and applied to large-scale inland power systems for the past decades.

Conventionally, the process of inland power system planning is divided into two steps, i.e., generation expansion planning (GEP) and transmission expansion planning (TEP), for the following reasons: It is difficult to deal with GEP and TEP simultaneously due to the huge number of variables.

The construction of power stations and transmission lines are in the charge of different sections of the power industry.

Over 80% of the total expansion cost goes to GEP whereas TEP only accounts for a small fraction of the investment, which leads to relatively minor errors with the two-step planning procedure.

Either GEP or TEP has been widely investigated in the past research.

 For GEP, different techniques have been used, for instance, fuzzy logic, genetic algorithm (GA), particle swarm optimization (PSO), Tabu search and etc.

 However, without the geographical information of generators and transmissions, all generators were just considered to be at a single nodal point.

As for TEP, there are also different methods for example, mixed integer linear programming (MILP) algorithms, heuristic methods, game theory and artificial intelligence techniques.

Similarly, without clear information of generations, the obtained TEP result can hardly be the most cost-effective one.

However, the composite generation and transmission system expansion planning is reasonable for offshore oilfield power systems.

 Three reasons are explained for this idea. First, offshore systems are much smaller than inland systems and have far fewer stations and lines to be planned, which means the number of decision variables is much smaller.

Second, both generation and transmission system are constructed and operated by a single company (In China, the company is China National Offshore Oil Corporation).

As a result, simultaneous and integrated planning of generation and transmission is feasible in the perspectives of both technology and management.

 Last but not least, the investment cost of submarine cables is enormous enough to be comparable to that of generators.

Consequently, separate execution of TEP and GEP could lead to ill-considered decisions.

 Overall, integrated planning is not only feasible but also necessary for offshore oilfield power systems.

Furthermore, special attention should be paid to two issues for the planning of offshore systems.

 One is the outage cost, which need be taken into account for the fact that loss of electricity in the offshore oilfield would cause serious damage to drilling equipment or even a complete halt of oil production.

 The other is the shipping cost, which should be explicitly considered for the reason that the distance from the mainland to offshore platforms is critical for determining the construction costs of generators and cables.

An integrated generation-transmission expansion planning model is proposed which includes outage cost and shipping cost.

 A genetic Tabu hybrid algorithm (GTHA) based optimization method has been developed to solve the integrated planning problem to find the optimal plan.

If you want to learn more about Deepwater Oil and Gas you could do so in my book, economic study of oil and gas well drilling. which is published on amazon, check it out at the link below.

https://www.amazon.com/dp/B07BST8YCC

تعليقات

المشاركات الشائعة من هذه المدونة

الفكر الاقتصادي في العصور الوسطى الأوروبية

العصور الوسطى الأوروبية: في القرون من التاسع حتى الخامس عشر الميلادية ساد في أوربا التكوين الاجتماعي الاقطاعي، وتتميز طريقة انتاجه التي بدأت في فرنسا ثم انتشرت في انجلترا وباقي مجتمعات أوروبا: ــ بأن العلاقات الاجتماعية للانتاج تدور أساسا حول الأرض التي تصبح البلورة المادية للملكية العقارية، اذ هي ترتكز على اقتصاد يغلب عليه الطابع الزراعي. ــ لمن يقومون بالعمل في الانمتاج الزراعي حق استعمال الأرض وشغلها. أما حق ملكيته فهو على درجات لهرم من السادة تحدده التقاليد والعادات. ــ هذا الأساس الاقتصادي يقابله شبكة من الروابط الشخصية، جزء من العاملين لا يتمتع بكامل حريته الشخصية حيث أنهم أقنان، أما السادة فيرتبط نظام ملكيتهم بنظام من الواجبات يتحمل بها كل منهم في مواجهة من هو أعلى منه. وتجد طريقة الانتاج هذه جذورها في المجتمع القديم حين بدأ كبار ملاك الأراضي يقاومون سلطة روما عن طريق الاقامة في ملكياتهم العقارية وتوسيع هذه الملكيات بالسيطرة على الملكيات الأصغر والمزارع المهجورة. في هذا النظام توجد جذور نظام الأقنان، غير أن هذا لا يعني أن القن وجد كنتيجة للتحرر الجزئي للعبد وانما ي

خصائص التخلف

خصائص التخلف تنقسم خصائص التخلف الى خصائص مادية أو اقتصادية وخصائص غير مادية أو تخلف البنيان الاجتماعي وسيتم تناولهم وفقا لما يلي:- أولا: الخصائص المادية للتخلف:- تتمثل الخصائص المادية للتخلف في اختلال العلاقة بين الموارد البشرية والمادية واختلال الهيكل الانتاجي والبطالة المقنعة واختلال هيكل الصادرات. 1- اختلال العلاقة بين الموارد البشرية والمادية:- هذه الخاصية ترجع الى عاملين أساسيين هما الانفجار السكاني وانخفاض مستوى التراكم الرأسمالي. ·         الانفجار السكاني:- تواجه الدول المتخلفة بلا استثاء انفجارا سكانيا وان اختلفت درجته وحدته , ويرجع ذلك الى العديد من العوامل منها تحسن وسائل وأساليب الصحة العامة مما يترتب عليه انخفاض شديد في الوفيات مع بقاء معدل المواليد عند مستوى مرتفع. تتميز الدول النامية بتركيب سكاني معين يمثل فيه صغار السن أهمية نسبية كبيرة حيث تزيد نسبة صغار السن في الدول النامية عن 40% بينما هي في الدول الأوروبية تتراوح بين 20-25% فقط وينتج عن ذلك انخفاض حجم القوة العاملة بالمقارنة بالبلدان المتقدمة. يؤدي الانفجار السكاني في الدول النامية الى أن ت

نظرية الانتاج

نظرية الانتاج ـ الانتاج يتمثل في الجهد الانساني الذي يبذل لجعل الموارد الاقتصادية صالحة لاشباع الحاجات الانسانية، وهو جهد يتضمن علاقة مزدوجة. علاقة بين الانسان والطبيعة، وعلاقة بين الانسان والانسان. ـ تتطلب عملية الانتاج توافر العناصر الآتية: القوة العاملة وأدوات العمل وموضوع العمل. ـ تضم نظرية الانتاج موضوعات عديدة أهمها: عناصر الانتاج وكيفية التأليف بين هذه العناصر وأشكال المشروعات القائمة الانتاج، واتجاهات هذه المشروعات. ـ عناصر الانتاج وتسمى أيضا عناصر المشروع هي الموارد التي يستخدمها المجتمع في انتاج ما يحتاجه من سلع وخدمات، عناصر الانتاج أربعة: الطبيعة والعمل ورأس المال والتنظيم. ـ الموارد الطبيعية كعنصر من عناصر الانتاج هي كافة هبات الطبيعة التي لم يوجدها عمل انساني سابق ولا حاضر والتي تمكن الانسان من انتاج السلع والخدمات التي يحتاجها لاشباع حاجاته. ـ الطبيعة عنصر سلبي في الانتاج. ـ هناك عدة عوامل اساسية تحكم مدى كفاية الموارد الطبيعية لحاجة الانسان اليها للقيام بنشاطه الانتاجي وهي على سبيل الحصر: 1-                     ثبات معالم الطبيعة الأساسية. 2-